Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Semin Cell Dev Biol ; 156: 1-10, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977107

RESUMO

The emergence of therapeutic resistance remains a formidable barrier to durable responses by cancer patients and is a major cause of cancer-related deaths. It is increasingly recognized that non-genetic mechanisms of acquired resistance are important in many cancers. These mechanisms of resistance rely on inherent cellular plasticity where cancer cells can switch between multiple phenotypic states without genetic alterations, providing a dynamic, reversible resistance landscape. Such mechanisms underlie the generation of drug-tolerant persister (DTP) cells, a subpopulation of tumour cells that contributes to heterogeneity within tumours and that supports therapeutic resistance. In this review, we provide an overview of the major features of DTP cells, focusing on phenotypic and metabolic plasticity as two key drivers of tolerance and persistence. We discuss the link between DTP cell plasticity and the potential vulnerability of these cells to ferroptosis. We also discuss the relationship between DTP cells and cells that survive the induction of apoptosis, a process termed anastasis, and discuss the properties of such cells in the context of increased metastatic potential and sensitivity to cell death mechanisms such as ferroptosis.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Plasticidade Celular , Neoplasias/patologia , Apoptose , Morte Celular
2.
Front Mol Biosci ; 10: 1327310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099193

RESUMO

The tumour-associated carbonic anhydrases (CA) IX and XII are upregulated by cancer cells to combat cellular and metabolic stress imparted by hypoxia and acidosis in solid tumours. Owing to its tumour-specific expression and function, CAIX is an attractive therapeutic target and this has driven intense efforts to develop pharmacologic agents to target its activity, including small molecule inhibitors. Many studies in multiple solid tumour models have demonstrated that targeting CAIX activity with the selective CAIX/XII inhibitor, SLC-0111, results in anti-tumour efficacy, particularly when used in combination with chemotherapy or immune checkpoint blockade, and has now advanced to the clinic. However, it has been observed that sustainability and durability of CAIX inhibition, even in combination with chemotherapy agents, is limited by the occurrence of adaptive resistance, resulting in tumour recurrence. Importantly, the data from these models demonstrates that CAIX inhibition may sensitize tumour cells to cytotoxic drugs and evidence now points to ferroptosis, an iron-dependent form of regulated cell death (RCD) that results from accumulation of toxic levels of phospholipid peroxidation as a major mechanism involved in CAIX-mediated sensitization to cancer therapy. In this mini-review, we discuss recent advances demonstrating the mechanistic role CAIX plays in sensitizing cancer cells to ferroptosis.

3.
Mol Cancer Ther ; 22(10): 1228-1242, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37348875

RESUMO

The ability of tumor cells to alter their metabolism to support survival and growth presents a challenge to effectively treat cancers. Carbonic anhydrase IX (CAIX) is a hypoxia-induced, metabolic enzyme that plays a crucial role in pH regulation in tumor cells. Recently, through a synthetic lethal screen, we identified CAIX to play an important role in redox homeostasis. In this study, we show that CAIX interacts with the glutamine (Gln) transporter, solute carrier family 1 member 5 (SLC1A5), and coordinately functions to maintain redox homeostasis through the glutathione/glutathione peroxidase 4 (GSH/GPX4) axis. Inhibition of CAIX increases Gln uptake by SLC1A5 and concomitantly increases GSH levels. The combined inhibition of CAIX activity and Gln metabolism or the GSH/GPX4 axis results in an increase in lipid peroxidation and induces ferroptosis, both in vitro and in vivo. Thus, this study demonstrates cotargeting of CAIX and Gln metabolism as a potential strategy to induce ferroptosis in tumor cells.


Assuntos
Anidrases Carbônicas , Ferroptose , Humanos , Anidrase Carbônica IX/metabolismo , Glutamina , Anidrases Carbônicas/metabolismo , Linhagem Celular Tumoral , Antígenos de Neoplasias/metabolismo , Hipóxia , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos/genética
4.
Cancers (Basel) ; 14(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35884358

RESUMO

Carbonic Anhydrase IX (CAIX) is a major metabolic effector of tumor hypoxia and regulates intra- and extracellular pH and acidosis. Significant advances have been made recently in the development of therapeutic targeting of CAIX. These approaches include antibody-based immunotherapy, as well as use of antibodies to deliver toxic and radioactive payloads. In addition, a large number of small molecule inhibitors which inhibit the enzymatic activity of CAIX have been described. In this commentary, we highlight the current status of strategies targeting CAIX in both the pre-clinical and clinical space, and discuss future perspectives that leverage inhibition of CAIX in combination with additional targeted therapies to enable effective, durable approaches for cancer therapy.

5.
Cancers (Basel) ; 14(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35804980

RESUMO

Cancer metastasis is a major barrier to the long-term survival of cancer patients. In cancer cells, integrin engagement downstream of cell-extracellular matrix (ECM) interactions results in the recruitment of cytoskeletal and signaling molecules to form multi-protein complexes to promote processes critical for metastasis. One of the major functional components of these complexes is Integrin Linked Kinase (ILK). Here, we discuss recent advances in our understanding of the importance of ILK as a signaling effector in processes linked to tumor progression and metastasis. New mechanistic insights as to the role of ILK in cellular plasticity, epithelial mesenchymal transition (EMT), migration, and invasion, including the impact of ILK on the formation of invadopodia, filopodia-like protrusions (FLPs), and Neutrophil Extracellular Trap (NET)-induced motility are highlighted. Recent findings detailing the contribution of ILK to therapeutic resistance and the importance of ILK as a potentially therapeutically tractable vulnerability in both solid tumors and hematologic malignancies are discussed. Indeed, pharmacologic inhibition of ILK activity using specific small molecule inhibitors is effective in curtailing the contribution of ILK to these processes, potentially offering a novel therapeutic avenue for inhibiting critical steps in the metastatic cascade leading to reduced drug resistance and increased therapeutic efficacy.

6.
Mol Cancer Res ; 20(3): 434-445, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34876482

RESUMO

Invasion of neighboring extracellular matrix (ECM) by malignant tumor cells is a hallmark of metastatic progression. This invasion can be mediated by subcellular structures known as invadopodia, the function of which depends upon soluble N-ethylmaleimide-sensitive factor-activating protein receptor (SNARE)-mediated vesicular transport of cellular cargo. Recently, it has been shown the SNARE Syntaxin4 (Stx4) mediates trafficking of membrane type 1-matrix metalloproteinase (MT1-MMP) to invadopodia, and that Stx4 is regulated by Munc18c in this context. Here, it is observed that expression of a construct derived from the N-terminus of Stx4, which interferes with Stx4-Munc18c interaction, leads to perturbed trafficking of MT1-MMP, and reduced invadopodium-based invasion in vitro, in models of triple-negative breast cancer (TNBC). Expression of Stx4 N-terminus also led to increased survival and markedly reduced metastatic burden in multiple TNBC models in vivo. The findings are the first demonstration that disrupting Stx4-Munc18c interaction can dramatically alter metastatic progression in vivo, and suggest that this interaction warrants further investigation as a potential therapeutic target. IMPLICATIONS: Disrupting the interaction of Syntaxin4 and Munc18c may be a useful approach to perturb trafficking of MT1-MMP and reduce metastatic potential of breast cancers.


Assuntos
Neoplasias da Mama , Podossomos , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Feminino , Humanos , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Invasividade Neoplásica/patologia , Podossomos/metabolismo , Proteínas SNARE/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
7.
MAbs ; 13(1): 1999194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34806527

RESUMO

The architectural complexity and heterogeneity of the tumor microenvironment (TME) remains a substantial obstacle in the successful treatment of cancer. Hypoxia, caused by insufficient oxygen supply, and acidosis, resulting from the expulsion of acidic metabolites, are prominent features of the TME. To mitigate the consequences of the hostile TME, cancer cells metabolically rewire themselves and express a series of specific transporters and enzymes instrumental to this adaptation. One of these proteins is carbonic anhydrase (CA)IX, a zinc-containing extracellular membrane bound enzyme that has been shown to play a critical role in the maintenance of a neutral intracellular pH (pHi), allowing tumor cells to survive and thrive in these harsh conditions. Although CAIX has been considered a promising cancer target, only two antibody-based therapeutics have been clinically tested so far. To fill this gap, we generated a series of novel monoclonal antibodies (mAbs) that specifically recognize the extracellular domain (ECD) of human CAIX. Here we describe the biophysical and functional properties of a set of antibodies against the CAIX ECD domain and their applicability as: 1) suitable for development as an antibody-drug-conjugate, 2) an inhibitor of CAIX enzyme activity, or 3) an imaging/detection antibody. The results presented here demonstrate the potential of these specific hCAIX mAbs for further development as novel cancer therapeutic and/or diagnostic tools.


Assuntos
Antineoplásicos Imunológicos , Anidrases Carbônicas , Anticorpos Monoclonais/farmacologia , Antígenos de Neoplasias , Biomarcadores Tumorais , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio
8.
MAbs ; 13(1): 1997072, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34812124

RESUMO

Human carbonic anhydrase (hCAIX), an extracellular enzyme that catalyzes the reversible hydration of CO2, is often overexpressed in solid tumors. This enzyme is instrumental in maintaining the survival of cancer cells in a hypoxic and acidic tumor microenvironment. Absent in most normal tissues, hCAIX is a promising therapeutic target for detection and treatment of solid tumors. Screening of a library of anti-hCAIX monoclonal antibodies (mAbs) previously identified three therapeutic candidates (mAb c2C7, m4A2 and m9B6) with distinct biophysical and functional characteristics. Selective binding to the catalytic domain was confirmed by yeast surface display and isothermal calorimetry, and deeper insight into the dynamic binding profiles of these mAbs upon binding were highlighted by bottom-up hydrogen-deuterium exchange mass spectrometry (HDX-MS). Here, a conformational and allosterically silent epitope was identified for the antibody-drug conjugate candidate c2C7. Unique binding profiles are described for both inhibitory antibodies, m4A2 and m9B6. M4A2 reduces the ability of the enzyme to hydrate CO2 by steric gating at the entrance of the catalytic cavity. Conversely, m9B6 disrupts the secondary structure that is necessary for substrate binding and hydration. The synergy of these two inhibitory mechanisms is demonstrated in in vitro activity assays and HDX-MS. Finally, the ability of m4A2 to modulate extracellular pH and intracellular metabolism is reported. By highlighting three unique modes by which hCAIX can be targeted, this study demonstrates both the utility of HDX-MS as an important tool in the characterization of anti-cancer biotherapeutics, and the underlying value of CAIX as a therapeutic target.


Assuntos
Medição da Troca de Deutério , Espectrometria de Massa com Troca Hidrogênio-Deutério , Anticorpos Monoclonais/química , Domínio Catalítico , Deutério/química , Medição da Troca de Deutério/métodos , Mapeamento de Epitopos/métodos , Humanos
10.
Sci Adv ; 7(35)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34452919

RESUMO

The metabolic mechanisms involved in the survival of tumor cells within the hypoxic niche remain unclear. We carried out a synthetic lethal CRISPR screen to identify survival mechanisms governed by the tumor hypoxia-induced pH regulator carbonic anhydrase IX (CAIX). We identified a redox homeostasis network containing the iron-sulfur cluster enzyme, NFS1. Depletion of NFS1 or blocking cyst(e)ine availability by inhibiting xCT, while targeting CAIX, enhanced ferroptosis and significantly inhibited tumor growth. Suppression of CAIX activity acidified intracellular pH, increased cellular reactive oxygen species accumulation, and induced susceptibility to alterations in iron homeostasis. Mechanistically, inhibiting bicarbonate production by CAIX or sodium-driven bicarbonate transport, while targeting xCT, decreased adenosine 5'-monophosphate-activated protein kinase activation and increased acetyl-coenzyme A carboxylase 1 activation. Thus, an alkaline intracellular pH plays a critical role in suppressing ferroptosis, a finding that may lead to the development of innovative therapeutic strategies for solid tumors to overcome hypoxia- and acidosis-mediated tumor progression and therapeutic resistance.


Assuntos
Bicarbonatos , Neoplasias , Liases de Carbono-Enxofre , Anidrase Carbônica IX , Hipóxia Celular , Linhagem Celular Tumoral , Humanos , Hipóxia , Ferro , Neoplasias/genética
11.
Oncoimmunology ; 10(1): 1940674, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249475

RESUMO

The CMS4 mesenchymal subtype of colorectal cancer (CRC) is associated with poor prognosis and resistance to treatment. The cellular prion protein PrPC is overexpressed in CMS4 tumors and controls the expression of a panel of CMS4-specific genes in CRC cell lines. Here, we sought to investigate PrPC downstream pathways that may underlie its role in CMS4 CRC. By combining gene set enrichment analyses and gain and loss of function approaches in CRC cell lines, we identify the integrin-linked kinase ILK as a proximal effector of PrPC that mediates its control on the CMS4 phenotype. We further leveraged three independent large CRC cohorts to assess correlations in gene expression pattern with patient outcomes and found that ILK is overexpressed in CMS4 mesenchymal tumors and confers a poor prognosis, especially when combined with high expression of the PrPC encoding gene PRNP. Of note, we discovered that the PrPC-ILK signaling axis controls the expression and activity of the tryptophan metabolizing enzyme indoleamine 2,3 dioxygenase IDO1, a key player in immune tolerance. In addition, we monitored alterations in the levels of tryptophan and its metabolites of the kynurenine pathway in the plasma of metastatic CRC patients (n = 325) and we highlight their prognostic value in combination with plasma PrPC levels. Thus, the PrPC-ILK-IDO1 axis plays a key role in the mesenchymal subtype of CRC. PrPC and IDO1-targeted strategies may represent new avenues for patient stratification and treatment in CRC.


Assuntos
Neoplasias Colorretais , Neoplasias Colorretais/diagnóstico , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase , Proteínas Priônicas , Prognóstico , Proteínas Serina-Treonina Quinases
12.
Urol Oncol ; 39(8): 498.e1-498.e11, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34083096

RESUMO

OBJECTIVE: Carbonic anhydrase IX (CA9) is important in the regulation of intra- and extracellular pH in solid tumors, contributing to cell growth and invasion. In urothelial carcinoma (UC), CA9 has been identified as a urinary marker for disease detection, but its biologic role is unknown. To date, differential gene expression patterns of CA9 in various molecular subtypes and potential effects of CA9 inhibition in UC cells are unknown. We aimed to investigate the function of CA9 and the effects of CA9 inhibition in invasive UC. METHODS: Immunohistochemistry was used to assess CA9 expression in a cohort of 153 patients undergoing radical cystectomy. CA9 expression was correlated with molecular subtype by analysis of the TCGA data and of our own cohort of 223 patients with invasive UC receiving neoadjuvant chemotherapy. CA9 expression was assessed in a panel of 12 UC cell lines by Western Blot and qPCR, and multiple siRNAs were used to silence CA9 in 2 cell lines. Effects of CA9 silencing on cell growth, migration, and invasion were assessed. We also used the small molecule inhibitor U-104 to inhibit CA9 in vitro and in an orthotopic xenograft model. RESULTS: CA9 expression was higher in cancer tissue compared to benign urothelium and was particularly highly expressed in luminal papillary and basal squamous tumors. CA9 expression did not correlate with outcome after neoadjuvant chemotherapy and/or radical cystectomy. Silencing of CA9 by siRNA diminished invasion but did not induce a consistent change of cell growth and migration. Treatment with U-104 led to cell growth reduction only at high concentrations in vitro and failed to have a significant effect on tumor growth in vivo. CONCLUSIONS: The present study confirms over-expression of CA9 in UC and for the first time shows a correlation with molecular subtypes. However, CA9 expression showed no association with the outcome of patients with muscle invasive bladder cancer and inhibition of CA9 did not lead to a consistent inhibition of tumor growth. Based on these data, CA9 exhibits a role neither as a predictive or prognostic marker nor as a therapeutic target in invasive UC.


Assuntos
Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sulfonamidas/farmacologia , Neoplasias da Bexiga Urinária/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos de Neoplasias/genética , Apoptose , Biomarcadores Tumorais , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/genética , Proliferação de Células , Feminino , Seguimentos , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Compostos de Fenilureia/farmacologia , Prognóstico , Taxa de Sobrevida , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancers (Basel) ; 13(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804486

RESUMO

PURPOSE: Granulocyte colony-stimulating factor (G-CSF) and hypoxia modulate the tumour immune microenvironment. In model systems, hypoxia-induced carbonic anhydrase IX (CAIX) has been associated with G-CSF and immune responses, including M2 polarization of macrophages. We investigated whether these associations exist in human breast cancer specimens, their relation to breast cancer subtypes, and clinical outcome. METHODS: Using validated protocols and prespecified scoring methodology, G-CSF expression on carcinoma cells and CD163 expression on tumour-associated macrophages were assayed by immunohistochemistry and applied to a tissue microarray series of 2960 primary excision specimens linked to clinicopathologic, biomarker, and outcome data. RESULTS: G-CSFhigh expression showed a significant positive association with ER negativity, HER2 positivity, presence of CD163+ M2 macrophages, and CAIX expression. In univariate analysis, G-CSFhigh phenotype was associated with improved survival in non-luminal cases, although the CAIX+ subset had a significantly adverse prognosis. A significant positive association was observed between immune checkpoint biomarkers on tumour-infiltrating lymphocytes and both G-CSF- and CAIX-expressing carcinoma cells. Immune checkpoint biomarkers correlated significantly with favourable prognosis in G-CSFhigh/non-luminal cases independent of standard clinicopathological features. CONCLUSIONS: The prognostic associations linking G-CSF to immune biomarkers and CAIX strongly support their immunomodulatory roles in the tumour microenvironment.

15.
Cell Rep Med ; 1(8): 100131, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33294856

RESUMO

Activating KRAS mutations are found in over 90% of pancreatic ductal adenocarcinomas (PDACs), yet KRAS has remained a difficult target to inhibit pharmacologically. Here, we demonstrate, using several human and mouse models of PDACs, rapid acquisition of tumor resistance in response to targeting KRAS or MEK, associated with integrin-linked kinase (ILK)-mediated increased phosphorylation of the mTORC2 component Rictor, and AKT. Although inhibition of mTORC1/2 results in a compensatory increase in ERK phosphorylation, combinatorial treatment of PDAC cells with either KRAS (G12C) or MEK inhibitors, together with mTORC1/2 inhibitors, results in synergistic cytotoxicity and cell death reflected by inhibition of pERK and pRictor/pAKT and of downstream regulators of protein synthesis and cell survival. Relative to single agents alone, this combination leads to durable inhibition of tumor growth and metastatic progression in vivo and increased survival. We have identified an effective combinatorial treatment strategy using clinically viable inhibitors, which can be applied to PDAC tumors with different KRAS mutations.


Assuntos
Sistema de Sinalização das MAP Quinases/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação/efeitos dos fármacos , Mutação/genética , Ductos Pancreáticos/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias Pancreáticas
16.
Front Cell Dev Biol ; 8: 602668, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240897

RESUMO

Solid tumors are challenged with a hypoxic and nutrient-deprived microenvironment. Hence, hypoxic tumor cells coordinatively increase the expression of nutrient transporters and pH regulators to adapt and meet their bioenergetic and biosynthetic demands. Carbonic Anhydrase IX (CAIX) is a membrane-bound enzyme that plays a vital role in pH regulation in the tumor microenvironment (TME). Numerous studies have established the importance of CAIX in mediating tumor progression and metastasis. To understand the mechanism of CAIX in mediating tumor progression, we performed an unbiased proteomic screen to identify the potential interactors of CAIX in the TME using the proximity-dependent biotin identification (BioID) technique. In this review, we focus on the interactors from this BioID screen that are crucial for nutrient and metabolite transport in the TME. We discuss the role of transport metabolon comprising CAIX and bicarbonate transporters in regulating intra- and extracellular pH of the tumor. We also discuss the role of amino acid transporters that are high confidence interactors of CAIX, in optimizing favorable metabolic state for tumor progression, and give our perspective on the coordinative interplay of CAIX with the amino acid transporters in the hypoxic TME.

17.
Metabolites ; 10(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066524

RESUMO

The tumor microenvironment is crucial for the growth of cancer cells, triggering particular biochemical and physiological changes, which frequently influence the outcome of anticancer therapies. The biochemical rationale behind many of these phenomena resides in the activation of transcription factors such as hypoxia-inducible factor 1 and 2 (HIF-1/2). In turn, the HIF pathway activates a number of genes including those involved in glucose metabolism, angiogenesis, and pH regulation. Several carbonic anhydrase (CA, EC 4.2.1.1) isoforms, such as CA IX and XII, actively participate in these processes and were validated as antitumor/antimetastatic drug targets. Here, we review the field of CA inhibitors (CAIs), which selectively inhibit the cancer-associated CA isoforms. Particular focus was on the identification of lead compounds and various inhibitor classes, and the measurement of CA inhibitory on-/off-target effects. In addition, the preclinical data that resulted in the identification of SLC-0111, a sulfonamide in Phase Ib/II clinical trials for the treatment of hypoxic, advanced solid tumors, are detailed.

18.
Sci Rep ; 10(1): 12644, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724089

RESUMO

Tendons are specialized tissues composed primarily of load-responsive fibroblasts (tenocytes) embedded in a collagen-rich extracellular matrix. Habitual mechanical loading or targeted exercise causes tendon cells to increase the stiffness of the extracellular matrix; this adaptation may occur in part through collagen synthesis or remodeling. Integrins are likely to play an important role in transmitting mechanical stimuli from the extracellular matrix to tendon cells, thereby triggering cell signaling pathways which lead to adaptive regulation of mRNA translation and protein synthesis. In this study, we discovered that mechanical stimulation of integrin ß1 leads to the phosphorylation of AKT, an event which required the presence of integrin-linked kinase (ILK). Repetitive stretching of tendon cells activates the AKT and mTOR pathways, which in turn regulates mRNA translation and collagen expression. These results support a model in which integrins are an upstream component of the mechanosensory cellular apparatus, regulating fundamental tendon cell functions relevant to exercise-induced adaptation and mechanotherapy.


Assuntos
Órgãos Bioartificiais , Colágeno/metabolismo , Integrina beta1/metabolismo , Mecanotransdução Celular , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tendões/metabolismo , Adulto , Fenômenos Biomecânicos , Sobrevivência Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Integrina beta1/genética , Masculino , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Tendões/citologia
19.
Cell Stem Cell ; 27(1): 110-124.e9, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32413332

RESUMO

Patients with chronic myeloid leukemia (CML) often require lifelong therapy with ABL1 tyrosine kinase inhibitors (TKIs) due to a persisting TKI-resistant population of leukemic stem cells (LSCs). From transcriptome profiling, we show integrin-linked kinase (ILK), a key constituent of focal adhesions, is highly expressed in TKI-nonresponsive patient cells and their LSCs. Genetic and pharmacological inhibition of ILK impaired the survival of nonresponder patient cells, sensitizing them to TKIs, even in the presence of protective niche cells. Furthermore, ILK inhibition eliminated TKI-refractory LSCs from patients, but not normal HSCs, in vitro and in vivo. RNA-sequencing and functional validation studies implicated an important role of ILK in maintaining a requisite level of mitochondrial oxidative metabolism in highly purified, quiescent LSCs. Thus, these findings point to ILK as a critical survival mediator to TKIs and quiescent stem cells, offering an attractive therapeutic target and model for curative combination therapies in stem-cell-driven cancers.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Células-Tronco Neoplásicas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases
20.
Nat Rev Mol Cell Biol ; 21(6): 341-352, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32300252

RESUMO

Epithelial-mesenchymal transition (EMT) encompasses dynamic changes in cellular organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions and is driven by a conserved set of inducing signals, transcriptional regulators and downstream effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT is expanding rapidly. This growing interest warrants the need for a consensus among researchers when referring to and undertaking research on EMT. This Consensus Statement, mediated by 'the EMT International Association' (TEMTIA), is the outcome of a 2-year-long discussion among EMT researchers and aims to both clarify the nomenclature and provide definitions and guidelines for EMT research in future publications. We trust that these guidelines will help to reduce misunderstanding and misinterpretation of research data generated in various experimental models and to promote cross-disciplinary collaboration to identify and address key open questions in this research field. While recognizing the importance of maintaining diversity in experimental approaches and conceptual frameworks, we emphasize that lasting contributions of EMT research to increasing our understanding of developmental processes and combatting cancer and other diseases depend on the adoption of a unified terminology to describe EMT.


Assuntos
Pesquisa Biomédica/normas , Transição Epitelial-Mesenquimal , Animais , Movimento Celular , Plasticidade Celular , Consenso , Biologia do Desenvolvimento/normas , Humanos , Neoplasias/patologia , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA